Flame Inhibition by Ferrocene and Blends of Inert and Catalytic Agents

نویسنده

  • G. T. LINTERIS
چکیده

The production of the fire suppressant CF3Br has been banned, and finding a replacement with all of its desirable properties is proving difficult. Iron pentacarbonyl has been found to be up to several orders of magnitude more effective than CF3Br, but it is flammable and highly toxic. Ferrocene [Fe(C5H5)2], which is much less toxic and flammable than Fe(CO)5, can also be used to introduce iron into a flame. We present the first experimental data and numerical modeling for flame inhibition by ferrocene and find it to behave similarly to Fe(CO)5. A ferrocene mole fraction of 200 ppm reduced the burning velocity of slightly preheated premixed methane/air flames by a factor of two, and the effectiveness dropped off sharply at higher mole fractions. For air with a higher oxygen mole fraction, the burning velocity reduction was less. We also present experimental data and modeling for flames with ferrocene blended with CO2 or CF3H. The combination of the thermally acting agent CO2 with ferrocene mitigated the loss of effectiveness experienced by ferrocene alone at higher mole fractions. An agent consisting of 1.5% ferrocene in 98.5% CO2 performed as effectively as CF3Br in achieving a 50% reduction in burning velocity. Likewise, four times less CO2 was required to achieve the 50% reduction if 0.35% ferrocene was added to the CO2. In contrast, addition of 0.35% ferrocene to the hydrofluorocarbon CF3H reduced the CF3H required to achieve the 50% reduction in burning velocity by only about 25%. Thermodynamic equilibriumcalculations predict that the formation of iron/fluoride compounds can reduce the concentrations of the iron-species oxide and hydroxide intermediates which are believed to be responsible for the catalytic radical recombination cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-pot Three-Component Synthesis of Dihydroquinoxalin-2-amines Containing a Ferrocene unit with the Potential of Biological and Pharmacological Activities

A three-component reaction between 1,2-phenylenediamine, ferrocenecarbaldehyde, and isocyanides in the presence of a catalytic amount of p-toluenesulfonic acid for the synthesis of 3,4-dihydroquinoxalin-2-amine derivatives containing a ferrocene unit is reported. This approach is an effective procedure because the products have a broad spectrum of biological and pharmacological activities such ...

متن کامل

Flame Synthesis of Carbon Nanorods with / without catalyst

The carbon nanorods (CNR’s) were synthesized using flame reactor with diffusion burner. The growth of carbon nanorods in presence and absence of catalyst has been studied. The role of ferrocene as catalyst in the synthesis of carbon nanorods was investigated using a Flame Reactor at different oxygen to fuel ratios. The fuel used over here is acetylene. The fuel i.e., acetylene to oxygen ratio i...

متن کامل

Growth of wurtzite ZnO nanorods using different capping agents: Characterization, morphology, and investigation the catalytic activity in some oxindoles and indolyl organics

ZnO nanorods have been prepared through chemical deposition of Zn(OAc)2.2H2O by employing different capping agents, (PEG, MW=2000 and PEG, MW=5000). The fabricated catalyst was characterized by scanning electron microscope (SEM) images and XRD pattern. The results show the one dimensional growth of ZnO nano-rods. The results show that capping agents can control the shape and growth of nano-size...

متن کامل

Influence of Antimony-Halogen Additives on Flame Propagation.

A kinetic model for flame inhibition by antimony-halogen compounds in hydrocarbon flames is developed. Thermodynamic data for the relevant species are assembled from the literature, and calculations are performed for a large set of additional species of Sb-Br-C-H-O system. The main Sb- and Br-containing species in the combustion products and reaction zone are determined using flame equilibrium ...

متن کامل

The Effect of Mg(OH)2 Nanoparticles on the Thermal Stability and Flame Retardancy of Paraloid Nanocomposites

Paraloid-Mg(OH)2 nanocomposites were synthesized via sonochemical method. Nanostructures were characterized by XRD and SEM. Thermal stability behavior of paraloid filled with magnesium hydroxide was investigated by thermogravimetric analysis (TGA). The influence of Mg(OH)2 nanostructures on the flame retardancy of the paraloid matrix was studied using UL-94 analysis. Our r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001